报告人:姜铁锋(美国明尼苏达大学)
报告时间:2019年8月7日上午9:00-10:00
报告地点:mk体育官网一楼报告厅
报告摘要:
Consider a standard white Wishart matrix with parameters n and p. Motivated by applications in high-dimensional statistics and signal processing,we perform asymptotic analysis on the maxima and minima of the eigenvalues of all the m×m principal minors, under the asymptotic regime that n,p,m go to infinity. Asymptotic results concerning extreme eigenvalues of principal minors of real Wigner matrices are also obtained. In addition, we discuss an application of the theoretical results to the construction of compressed sensing matrices, which provides insights to compressed sensing in signal processing and high dimensional linear regression in statistics. This is a joint work with Tony Cai and Xiaoou Li.
报告人简介:
姜铁锋,美国明尼苏达大学统计系终身教授,美国总统奖获得者。主要从事概率统计理论及其相关领域的研究,特别是在概率论、高维统计以及纯数学等交叉学科取得了突破性的进展。姜教授开创的随机几何领域中球面上随机点的研究结果还被德国慕尼黑大学物理学家Daniel Junghans应用在宇宙大爆炸理论的研究之中。姜教授目前已发表论文30多篇,其中绝大部分发表在国际顶尖的概率统计与机器学习杂志上,包括《Ann. Probab.》、《Probab. Theor. Rel. Fields》、《Ann. Stat.》、《Ann. Appl. Probab.》、《J. Mach. Learn. Res.》等。曾百余次在重要国际会议和世界著名大学做邀请报告、组织学术会议和开展暑期研讨班。