报告题目:The complete Kähler-Einstein metric on a type of quasi-homogeneous Forelli-Rudin structure
主 讲 人:陈明明
单 位:首都师范大学
时 间:2024年5月24日 15:00-16:00
地 点:公司南阶教室
摘 要:It follows from the result of Mok-Yau that there exists the unique complete Kähler-Einstein metric on a pseudoconvex domain in Cn. We want obtain the unique complete Kähler-Einstein metric on a type of quasi-homogeneous Forelli-Rudin structure Ω. We will present the Kähler potential function with some parameters satisfies a complex Monge-Ampère equation on a real 2-dimensional closed subset of Ω. Then by using the holomorphic automorphism, and the Ricci curvature invariance under the holomorphic automorphism group, we derive the explicit expression of the complete Kähler-Einstein metric for the domain.
简 介:陈明明,mk体育2018级基础数学专业硕士,现就读于首都师范大学数学科学学院,2021级基础数学专业博士,导师王安教授,研究方向为多复变函数论。