报告题目:Salem numbers with minimal trace
主 讲 人:吴强 教授
单 位:西南大学
时 间:2024年6月1日 9:00
地 点:二楼会议室
摘 要:A Salem number \tau of degree 2d is a real algebraic integer greater than 1 whose other conjugates all lie in the closed disc |z| ≤ 1, with at least one on the unit circle. The transformation \alpha=\tau+1/\tau +2 produces a totally positive algebraic integer \alpha of degree d whose all zeros but one are in the interval (0, 4). In this talk, a new method is given to optimize the lower and upper bounds for such totally positive algebraic integer \alpha with given trace and given degree, and then the bounds for s_k. Therefore all Salem numbers of degree 32, 40 and 62 with minimal trace −3, −4 and −6 respectively are found. Consequently, the new lower bounds for degrees of Salem numbers with these minimal traces are given. This is a joint work with Qiong Chen.
简 介:吴强,西南大学mk体育官网三级教授,博士生导师,重庆数学会常务理事,重庆市学科技术带头人,重庆市高层次引进人才,重庆英才。主要从事计算数论方面的研究,在Math. Computation, J. Number Theory等国际知名杂志发表多篇论文,在代数整数的性质和无理数的有理逼近等方面取得重要成果。多次受邀访问法国、加拿大、香港等国内外科研机构并做学术报告。