题 目:Riesz transform on manifolds with mixed ends
主讲人:沈田鋆
单 位:天津大学
时 间:2025年1月2日 11:00
腾讯ID:150-232-556
密 码:250102
摘 要: In this talk, we will focus on the Riesz transform on a certain class of manifolds where the doubling condition fails. We shall consider the class of manifolds $M$ obtained by taking the connected sum of a finite number of non-compact manifolds $M_i$. Here each $M_i$ may have different volume growth, implying that the manifold $M$ can not satisfy the doubling condition. Suppose that each manifold $M_i$ satisfies the relative connected annuli condition and the Li-Yau estimate for the heat kernel.Then on such manifold $M$, we establish the boundedness of the Riesz transform on $L^p(M)$ for each $1 < p \leq 2$. It is a joint work with R. Jiang, H. Li and B. Li.
简 介: 沈田鋆,2024年于天津大学数学学院获得博士学位,主要研究领域为调和分析及其应用。在JDE,Proc Roy Soc Edinburgh Sect A,JGA,Q. J. Math.等国际数学期刊上发表了学术论文数篇.