王琪304
姓名:王琪 职称:教授 办公室:304 研究方向:非线性分析 教育背景: 2005.09-2010.07 博士,南开大学,基础数学 2001.09-2010.06 学士,华中科技大学,数学与应用数学 |
工作经历:
2024.04-至今 mk体育,教授
2014.04-2024.04 mk体育, 副教授
2014.08-2015.08 佐治亚理工, 访问学者
2010.07-2014.04 mk体育, 讲师
主讲课程:
数学分析、数学分析选讲、泛函分析、非线性泛函分析
部分学术论文:
1.Y.Li, Q.Wang, L.Wu, Some Abstract Critical Point Theorems and Applications in Wave Equations, Front. Math.(已接收)
2.Q.Wang, L.Wu, Relative Morse Index Theory Without Compactness Assumption, Front. Math. 18(3)(2023) 731–742.
3.W. Deng, W. Han, Q. Wang, The existence of periodic solution for infinite dimensional Hamiltonian systems, Computers and Mathematics with Applications 79 (2020) 354–362.
4.Q. Wang, C. Liu, An Index Theory with Applications to Homoclinic Orbits of Hamiltonian Systems and Dirac Equations, J. Dynamics and Differential Equations 32(2020) 1177–1201.
5.Q. Wang, C. Liu, A new index theory for linear self-adjoint operator equations and its applications, J. Differential Equations 260 (2016) 3749–3784
6.Q.Wang, C. Liu,The relative Morse index theory for infinite dimensional Hamiltonian systems with applications, J. Math. Anal. Appl. 427 (2015) 17–30.
7.Q.Zhang, Q.Wang, Multiple solutions for a class of sublinear Schrödinger equations, J. Math. Anal. Appl. 389 (2012) 511–518.
8.Q.Wang, C. Liu, Periodic solutions of delay differential systems via Hamiltonian systems, Nonlinear Analysis 102 (2014) 159–167.
9.C. Liu, Q. Wang,Symmetrical symplectic capacity with applications, DCDS-A, 32(6)(2012) 2253-2270.
10.C.Liu, Q. Wang, X. Lin, An index theory for symplectic paths associated with two Lagrangian subspaces with applications,Nonlinearity 24 (2011) 43–70.
11.C.Liu, Q. Wang, Some Abstract Critical Point Theorems for Self-adjoint Operator Equations and Applications,Chin. Ann. Math. 32B(1), 2011, 1–14
科研项目:
1. 哈密顿系统Maslov型指标与辛容量的研究,国家自然科学基金青年基金,2014-2016,主持。
2. 非常强不定问题的指标理论及其应用,河南省教育厅,2019,主持。